
1

Determining the Cause of a Design Model

Inconsistency
Alexander Reder and Alexander Egyed, Johannes Kepler University Linz, Austria

Abstract—When a software engineer finds an inconsistency in a model then the first question is why? What caused it? Obviously

there must be an error. But where could it be? Or is the design rule erroneous and if yes then which part? The cause of an

inconsistency identifies the part of the model or design rule where the error must be. We believe that the visualization of an

inconsistency ought to visualize the cause. Understanding the cause is of vital importance before a repair can even be formulated.

Indeed any automation (e. g., code generation, re-factoring) has to be considered with caution if it involves model elements

that cause inconsistencies. This paper analyzes the basic structure of inconsistent design rules as well as their behavior during

validation and presents an algorithm for computing its cause. The approach is fully automated, tool supported, and was evaluated

on 14,111 inconsistencies across 29 design models. We found that our approach computes correct causes for inconsistencies, these

causes are nearly always a subset of the model elements investigated by the design rules‘ validation (a naive cause computation

approximation), and the computation is very fast (99.8% of the causes are computable in <100ms).

Index Terms—Design Tools and Techniques, Programming Environments/Construction Tools, Validation

✦

1 Introduction

Design languages, such as the Unified Modeling Lan-
guage (UML) [24], must adhere to diverse constraints.
Some constraints are defined as part of the language
(e. g., UML well-formedness rules) while other con-
straints reflect modeling philosophies, domain restric-
tions, or even application needs. In our work we use
the term design rule to denote any of these constraints.
A design rule is defined on the meta model level and
consists of a condition that validates to either false
(inconsistent) or true (consistent) to express whether
the model satisfies the given design rule. Most state
of the art represents design rules in first order logic
and there are many approaches for validating design
rules and thus for detecting inconsistencies. However,
a basic question all approaches struggle with is how
to communicate the cause of an inconsistency, once
encountered, to the designer.

1.1 The Cause of an Inconsistency

An inconsistency is a violated condition of a design
rule. It is important to not confuse the cause of an
inconsistency with an error or repair. The cause of an
inconsistency identifies the part of the model and design
rule that contributed to the inconsistency. This part
must contain an error; an error that eventually needs
to be repaired. However, not the entire cause must be
erroneous. For example, a design rule condition that
requires a message name to be equal to an operation
name would be inconsistent, if the two names were to
differ. In such a case, both the operation name and
message name cause the inconsistency (without the
operation name there would be no inconsistency; nor
without the message name). However, both names need

not to be changed to repair the inconsistency. While
the cause is precisely determinable (the message name
and the operation name), the repair is uncertain (repair
the message name, the operation name, or both?). This
work focuses on computing the cause.

We define the cause of a design rule inconsistency
to enumerate all model element properties (i. e., parts
of the model if the model is presumed erroneous) and
design rule expressions (i. e., parts of the design rule
if the rule is presumed erroneous) that contributed to
the inconsistency. We define ‘contributed‘ as implying
that the model element property was involved in the
reasoning that led to the inconsistency, much like both
the message name and the operation name contributed
in the example above. For every inconsistency there is
exactly one cause and this cause is neutral towards re-
pairs of which there are typically many alternatives [26].
Previous work [8], [20] demonstrated that at least one
and at most all the model element properties accessed
during the design rule’s validation must have caused
the inconsistency. Yet, as will be demonstrated, typi-
cally not all model element properties accessed during
validation of a design rule caused the inconsistency; nor
do only accessed models element properties cause incon-
sistencies. This work is analogous to the computation
of all MUS [19] for SAT models where the union of all
MUS is the cause of an UNSAT. However, the focus on
design modeling and rich design rule languages makes
the cause computation for design models distinct from
the SAT world. The concept of a cause is thus a known
concept; however, how to compute the cause for design
models with their rich design rule languages is a novel
contribution of this work.

2

1.2 Application of Cause Computation

Designers can use information on the cause to assess
trust in a design model. Simply said, an inconsistency
is a symptom of a problem and a model element that
causes an inconsistency should not be relied upon for as
long as the inconsistency persists. For visualization this
implies that all model element properties that caused
an inconsistency should be highlighted to ensure equal
emphasis (and blame). State-of-the-art tools tend to
visualize a single element only in case of inconsistency,
usually the design rule’s context element. This is not
ideal because the designer is then given a biased view.
For example, returning to the “message name must be
equal to the operation name” example above: If the
design tool were to highlight the message name only,
in case of inconsistency, then this conveys a misleading
sense of error (i. e., the message name being wrong
while in fact the operation name may be wrong) and
a misleading sense of correctness (i. e., the operation
name being correct because it is not highlighted while
in fact it could be wrong). A proper visualization of the
cause can thus contribute to a better design process and
avoid follow-on errors (other errors caused, in part, due
to the existence of errors in design models). A similar
argument can be made for all automations on mod-
els. For example, model re-factoring or transformation
(code generation) is less trustworthy if it involves model
elements known to cause inconsistencies [10]. As such, it
would be good to indicate code generated from a model
element as untrustworthy if that model element also
caused an inconsistency. Yet another application is for
generating repairs to resolve inconsistencies [26]. While
this paper purposely does not address repair issues, it
is obvious that we must first understand what caused
an inconsistency before we can think about how to
repair it. In better understanding the cause, we can
help focus the repair to those parts of the model that
contributed to the inconsistency. At least one and at
most all elements of the cause need to be changed
to repair an inconsistency. This application would also
improve current state-of-the-art which often focuses on
a too large or too small set of model element properties
during repairs.

1.3 Goal of this Paper

The main contribution of this paper is an algorithm
for computing a complete set of model element prop-
erties and a complete set of design rule expressions
that caused a given inconsistency. This work thus con-
tributes to the fundamental best practice of software en-
gineering and designers can use the information on the
cause to better understand inconsistencies. This work
combines the design rule’s structure and its behavior
during validation. This work thus expands on earlier
work [9] where we investigated inconsistencies by ob-
serving and analyzing their behavior during validation.
While a range of different languages are available for

describing design rule conditions, this work focuses on
OCL [23] as it is the most pre-dominant design rule
language today. Nonetheless, we believe that this paper
is also applicable to other constraint languages because
most follow the principles of predicate logic and set-
based reasoning. Similarly, this work focuses on UML
as the modeling language. Yet, this paper is not biased
towards any aspect of UML and should be applicable
to any modeling language that is based on a defined
syntax and semantics (e. g., meta model). Indeed, past
work has demonstrated that our basic framework can
be applied to product line languages [30], mechatronics
design languages, and others.

1.4 Paper Structure

The remainder of this paper is organized as follows.
Section 2 introduces a running example and defines the
basic terms used in this paper and demonstrates an
example of a cause of an inconsistency. Section 3 dis-
cusses the state-of-the art in consistency checking, and
presents existing approximation concepts for computing
the cause of inconsistencies. Section 4 lays out the main
principle of our approach and presents an algorithm
for computing the cause of an inconsistency. Section 5
discusses the evaluation of the approach and Section 6
concludes the paper with an outlook on future work.

2 Illustration, Background and Definitions

In this section we introduce a simple UML model and
OCL design rule. The notation used in this section and
in the rest of this paper is as follows: Type informa-
tion from the meta model is written in Slanted font.
Operation types (from design rule conditions), model
elements and properties are typed in Typewriter font
and the values of model element properties as well as
constants are written in ‘quotation‘ marks. Letters in
formulas that refer to the model are written in Roman
letters (M , a, b, . . .) and letters that refer to design
rules are written in Greek letters (σ, ζ, γ, . . .). Tuples
of elements are written in angle brackets (〈t, γ〉,. . .).

2.1 Introductory Example

To illustrate the problem in context of a design model,
consider the UML model in Figure 1. The given UML
class diagram (Figure 1) describes a simple inheritance
hierarchy of a Light. The Light is an Activatable

and has an Attribute that indicates if it is activated.
A Light can be a LED, ElectricBulb or a Candle.
The Class LED itself can be a Torch. All these classes
have further attributes. When we abstract the model
visualization we detect that a model consists of elements
that have properties. For example, the class Light has
the property name which is of type String and has the
value ‘Light‘.

Definition 1. A model (M) consists of elements

(e ∈ M), where the elements can have properties

3

Activatable

activated

Light

activated

LED

warmth

brightness

ElectricBulb

power

Candle

burning

Torch

activated

Figure 1. Class Hierarchy of a Light

(p). The property types can be any simple types like
Boolean, Integer, Float, String,. . . or references to other
elements (e.p 7→ M ∪ ‘any value‘). The elements of a
system are instances (⋔) of a specific type (t) defined
by the domain language (t ∈ DL). In the case of the
UML, the domain language is the UML Meta Model
defined by the OMG [24].

e ∈ M

e.p 7→ M ∪ ‘any value‘

t ∈ DL

e ⋔ t

2.2 Design Rule

A design rule describes a constraint that the design
model must satisfy. Most commonly used design rule
languages are based on first order logic [29].

Definition 2. A design rule (R) defines a Boolean
condition that the model must satisfy. A violation of
a design rule causes an inconsistency in the model.
A design rule is expressed as a tuple consisting of a
condition (γ) that validates to a Boolean (B) result,
‘true‘ (consistent) or ‘false‘ (inconsistent) and a specific
context, a model element type (t) that specifies the
model elements on which the condition must be vali-
dated.

R := 〈t, γ〉

γ : e 7→ B|e ⋔ t

Design Rule 1 shows a typical design rule expressed in
OCL that validates whether an Attribute of a Class is
not defined in a parent Class. A design rule is written
for a specific context (Line 1). In our example rule the
context is an UML type Class which implies that this
design rule is applied on every model element of type
Class in the model. The word inv defines an invariant,
i. e., this design rule must hold always. In this paper we
presume that all design rules are invariants. Illustrated
on the example model in Figure 1, this design rule will
be validated six times, once for each Class in the class
diagram.

Design Rule 1 Design Rule to Validate if an Attribute

is not Defined in a Parent Class

1 context Class inv :
2 l e t attrNms : Bag(S t r i ng)=s e l f . a t t r i bu t e−>

col lect (p : Property | p . name) in

3 s e l f . a l lPa r en t s ()−>forAll (c : C l a s s i f i e r |
4 c . a t t r i bu t e−>forAll (p : Property |
5 not attrNms−>exists (s : S t r i ng | s=p . name)))

To illustrate the validation of this design rule, we
explain the validation of the design rule on Class Torch.
Line 2 defines the variable attrNms, which holds the
names of the context Class‘ Attributes. The collect

operation collects the names (name property) of the
Class‘ Attributes (type Property). This variable now
contains all the names of the Torch Attributes ({‘acti-
vated‘}). After the variable declaration, the condition
of the design rule that must be satisfied is defined
between Line 3 and Line 5. Line 3 is a universal
quantifier (forAll) that iterates over all the super
Classes of the context Class (self.allParents). The
property allParents is a recursive call of the UML
properties generalizable and general of the context
Class and all its following super classes. The result
is a collection containing all super classes (UML type
Classifier) of the context Class ({LED, Light, Acti-
vatable}). The condition of the universal quantifier
(c:Classifier|c.attribute. . .) validates if no At-

tribute in the super class exists where the name equals
an Attribute name of the context Class. This is done by
an iteration over the attributes (UML type Property)
of the super class (Line 4). The condition of the second
universal quantifier checks if the actual Attribute name

does not exist in the collection of attribute names
(variable attrNms) from the context class (Line 5). The
condition starts with a negation (not) of the existential
quantifier (exists). The source of the existential quan-
tifier are the names from the context Class‘ Attribute
names. The condition of the existential quantifier is
an equality relation (=) that compares the Attribute

name from the context Class with the Attribute name

of the super Class (s:String|s=p.name). The overall
validation result of a design rule condition is a Boolean
value. In our example the validation fails (inconsistent)
because the Attribute activated is defined in the
parent Classes Light and Activatable.

2.3 Design Rule Operation Structure

As can be seen in Design Rule 1, a rule is com-
posed of hierarchically ordered operations with specific
arguments where the hierarchy decides which results
of operations are arguments to others. For example,
the self.attribute property call operation is an
argument to the collect operation that follows. In
the following, we refer to this hierarchical arrangements
of operations as expressions where the hierarchy of
expressions reflects the order on how operations are
called. Starting with a root expression that is the

4

starting point of the design rule validation and ending
at leaf expressions that reflect constants and property
calls. The root expression is then synonymous to the
design rule condition which must validate to a Boolean
result with the result being expected to be ‘true‘ for
the design rule to be consistent. The expected result
and the actually validated results will be explained in
more detail in the approach but due to completeness of
our definitions they are introduced here.

Definition 3. A design rule condition consists of a set
of hierarchically ordered (tree-based) expressions where
each expression consists of an operation (o), a set of 0
to ∗ arguments (α) and a validation result (ς) and an
expected result (σ). The arguments of an expression

(ǫx) are expressions itself, i. e., each expression has
exactly one parent (ρ) where this expression is a child
thereof except for the root expression (ǫ0). The root
expression has ‘true‘ as expected result (‘true‘ is equiv-
alent to consistent). A property call expression (ǫp) is a
special kind of expression that accesses a model element
property. Property call expressions access properties
of model elements. They do not have arguments nor
expected results and hence they are leaves in the tree
structure of expressions. This is similar to constant
expressions (ǫc).

ǫx>0∧x 6=p := 〈o, α, ρ, σ ∈ B, ς ∈ B〉

ǫ0 := 〈o, α, ς ∈ B〉

ǫp := 〈p, e, ρ, ς ∈ M ∪ ‘any value‘〉

ǫc := 〈ρ, ς ∈‘any value‘〉

∀i > 0∃j ≥ 0 ∧ j 6= p : ǫi ∈ ǫj .α ∧ ǫi.ρ = ǫj

Table 1 shows some commonly used operations in
OCL. For each operation, the argument types and the
result types are given. The negation, for example, has
only one argument of type Boolean and the result
is also of type Boolean. The conjunction, disjunction
and implication have two arguments of type Boolean
and a result of type Boolean. The equality relation
can have any type of arguments but its result is a
Boolean. The quantifiers (forAll and exists) have
two arguments where the type of the first argument
is a collection of elements of any type over which the
quantifier will iterate whereas the second argument is
a Boolean condition that applies to the elements of
that collection. The result types of both quantifiers are
Boolean.
Design rule languages such as the OCL also define

non-Boolean operations, mostly to access and navigate
the design model. For example, the property call

provides the value of a model element property, e. g.,
the name of a Class. A call of a model element property
might be a recursive process, as a property call might
refer to another model element and this model element
may also have properties that can be called. Hence,
a property call on a model element can be cascading
calls of property calls in the form of m.p1.p2 . . . px. The

Table 1

Common First Order Logic Operations and OCL

Extensions used by Design Model Consistency Checkers

argument types
operation OCL arg1 arg2 result type

¬ not Boolean - Boolean
∧ and Boolean Boolean Boolean
∨ or Boolean Boolean Boolean
⇒ implies Boolean Boolean Boolean
= = any any Boolean
∀ forAll collection Boolean Boolean
∃ exists collection Boolean Boolean

constant - - any
property

call
. element property any

collect collect collection property collection
select select collection Boolean collection

variable let reference any any

validated value of the property call expression is the
value of the last called property in that chain.
In our example Design Rule 1 such a property call

is shown in Line 2 and Line 5, where the name prop-
erty of a Class Attribute is accessed. These property
calls provide a single element value. The call of the
attribute property (Line 2 and Line 4) provide a
set of element values, the Attributes of a Class. The
collect operation type iterates over a set of elements
(first argument) and collects the results of a property
call (second argument) on a source element. The car-
dinality of the result set is equal the cardinality of the
source set: |Source| = |Result|. In contrast, the select
operation type filters elements from the source where
the condition, given as second argument, is satisfied.
The elements in the result are a subset of the source
elements: Source ⊇ Result. A variable declaration
references to a value provided by a model element that
can be accessed anywhere in the design rule after the
variable has been declared (declaration in Line 2, used
in Line 5).
The constant operation type let’s the rule writer

provide any value that can be used in a design rule.
This can be, for example, a Boolean constant ‘true‘ or
‘false‘, any string, float or integer value.

2.4 Cause of an Inconsistency

To illustrate the cause of an inconsistency, consider
again the example design rule and UML model. The
context of this design rule is an element of type Class,
i. e., the rule is validated on every Class in the class
diagram. First, we consider the cause of model element
properties. The validation of the design rule 1 on the
Class Torch failed because the Attribute activated is
defined in the super Class Light and Activatable. The
following twelve model element properties caused this
inconsistency:

1) Torch.attribute

2) activated(Torch).name

3) Torch.generalization

5

4) Torch.generalization.general (a generaliza-
tion returns an unnamed element, so we leave the
initial property call of this property call chain)

5) LED.generalization

6) LED.generalization.general

7) Light.generalization

8) Light.generalization.general

9) Light.attribute

10) activated(Light).name

11) Activatable.attribute

12) activate(Activatable).name

The first model element property is the attribute

property of the Class ‘Torch‘. This model element prop-
erty must be in the cause of model elements because
there would be no inconsistency if the Class Torch

would not own the Attribute activated (this property
is accessed in the let expression in Line 2 via the
attribute property of the self variable). The next
model element property in the cause is the name of
the Attribute activated. The name is accessed in
Line 2 as part of the collect expression. The name
also causes the inconsistency because there would be
no inconsistency if the attribute had a different name.
The next model element properties that must be in

the cause are the parents of the context class (element
properties 3 to 8, design rule Line 3). The parents
contribute to the cause because there would be no
inconsistency if, say, the Class Light were not a parent
of the Class Torch. Similarly, the attribute properties
are in the cause also. However, do note that the at-

tribute property of the Class LED is not in the cause
while the attribute property of the Class Light is.
This is explained in that none of the attributes of the
Class LED caused the inconsistency. Hence, while the
attribute properties are called for all parent classes,
only the ones that failed to satisfy the inner condition
of the design rule caused the inconsistency (element
properties 9 and 11, design rule Line 4). Consequently,
the name property of only those attributes are in the
cause (element properties 10 and 12, design rule Line 5).
In state-of-the-art it is commonly assumed that the

design rule is correct and inconsistencies must be caused
by model elements and their properties (the list above).
However, it is also possible that the design rule is incor-
rect (e. g., if the design rule is the result of a constraint
imposed by another model [6]). In this case, the cause
of the inconsistency could also be expressions of the
design rule itself. Recall that the cause computation
is neutral as to the eventual repair and as such we
simply enumerate causes but make no assessment as
to which is more likely or plausible. If the design rule
condition itself causes the inconsistency then some or all
its expressions must be part of the cause. Consider, for
example, that the writer of the design rule accidentally
uses an universal quantifier (forAll) instead of an
existential one (exists) in Line 4 of our design rule.
The meaning of this design rule now changes such
that, if there exist attributes in a class, at least one

of the parent class attributes must not be named as the
attributes of the context class. From this it follows that
the cause of an inconsistency contains parts of a design
rule condition.

Definition 4. A cause (ζ) of an inconsistency consists
of two parts: 1) The expressions where the validation
result does not equal the expected result (the cause of
expressions ζǫ), and 2) the model elements properties
that immediately influence the validation result of any
given expression (the cause of model element properties
ζe.p). Each expression that is in the cause must have
a parent that is in the cause too (except for the root
expressions which has no parent). The cause of an
inconsistency is then the union of all the model element
properties and of all expressions where the validated
result does not equals the expected result.

ζǫ(γ) :=
⋃

ǫx ∈ γ(m)|ǫx.ς 6= ǫx.σ ∧

(ǫx 6= ǫ0 ⇒ ǫx.ρ.ς 6= ǫx.ρ.σ)

ζe.p(γ) :=
⋃

ǫp.e.p ∈ γ(m)|ǫp.ρ.ς 6= ǫp.ρ.σ

2.5 Usability of the Cause

The main contribution of this paper is to help the user
to understand what causes an inconsistency in a design
model by identifying what parts of a model or design
rule (or both) contributed to it. Most inconsistency
management technologies to date attach inconsistencies
to the context element they were evaluated on. How-
ever, this conveys a misleading sense of error. As the
example above shows, the context element is but one of
many elements involved in the inconsistency. It may be
part of the cause but it may not necessarily be the error.
More problematic is the misleading sense of correctness
that is communicated if not the entire cause is identified
because the designer is wrongly left to believe that
other parts of the model are correct. Considering the
example, every element above that is missing from the
cause misleads the designer. Since the larger models we
validated that have more than 33K model elements, the
designer would be faced with the hard near impossible
task of trying to find erroneous elements from a large
pool of elements (the missing needle in a haystack)
where it is likely that the designer fails which may lead
to incorrect or sub-optimal repairs. Another weakness
with current state of the art is that they presume the
model to be wrong in case of inconsistencies. This is
generally true for generic well-formedness constraints
(e. g., such as the ones provided with UML) but not nec-
essary true for constraints derived from other sources,
say, requirements. The cause computation thus should
also compute which part of the design rule contributed.
In previous work, we argued that inconsistencies

should be associated with all elements that are accessed
during an inconsistent design rule’s validation. Doing so
is better in that most/all potentially erroneous elements
are highlighted, however, there may still be missing ele-
ments (false negatives) and incorrectly tagged elements
that were accessed but are not erroneous (false posi-
tives). This work remedies this problem by computing

6

a correct and complete cause. Section 1.2 enumerates
several applications of a correct and complete cause
computation.

3 Related Work

To the best of our knowledge, no work has ever investi-
gated how to compute the causes of inconsistencies for
design models. Nonetheless, the computation of causes
is sometimes done implicitly in work that focus on
how to repair inconsistencies. Moreover, understanding
the cause of inconsistencies in design models has some
similarity to program understanding in source code
(why does a program fail where the program here is
a design rule condition in first order logic) or cause
computations for other reasoning engines such as MUS
in SAT.
The closest analogy of our work is the (H)UMUS [22]

((High-level) Unions of Minimal Unsatisfiable Sets)
work for SAT models. An MUS [19] (Minimal Unsatis-
fiable Set) identifies a minimal unsatisfiable set and the
union of all unsatisfiable sets identifies the clauses (el-
ements) that caused an UNSAT (UNSAT is analogous
to inconsistent). Of course, it is possible to transform
a design model and its constraints to a SAT model,
followed by applying (H)UMUS. However, doing so has
problems and we argue that it is beneficial to identify
causes directly in design models. First, transforming
a design model to SAT is straightforward in principle
(e. g., Alloy [16] or Czarnecki-Petroszek [3]), however,
it is computationally intensive and we are not aware of
any instant, incremental mechanisms for doing so that
could compete in performance with our work. Second,
computing the cause in SAT is NP complete in com-
plexity. Third, the cause once determined in the SAT
model then needs to be interpreted back to the context
of the design model which requires extensive traceabil-
ity and reverse transformation. Both the SAT model
and the traceability would require extensive memory
overheads not needed by our approach. Points 1 and
3 are merely technical challenges. However, (H)UMUS
is not incremental and this work thus contributes a
fast, incremental mechanism that, to the best of our
knowledge, presently does not exist.
In our approach we are concentrating on analyzing

design rules that are expressed in first order predicate
logic [18], [29]. Our approach adopts some of these
ideas and includes them to achieve an approach that
is able to detect the cause of an inconsistencies based
on the structure and behavior of a first order predicate
logic expression. What is unique about our work is its
combination of the structure of the design rule and
its validation behavior. Most approaches to consistency
checking in design models are based on design rules in
predicate logic [20], [32]. Our approach should thus be
applicable to all of them. As a proof of concept, the
empirical evaluation focuses on OCL only.
Most of the consistency checking approaches that

exist for model based software development treat the

design rules that must be satisfied by a model as
black boxes. Furthermore, they use transformations to
validate the model against the design rules. Winkel-
mann et al. [31], for example, presents an approach
that translates meta models and OCL [23] design rules
into graphs so that the design rules can be checked
during the instance generation process. Furthermore,
Czarnecki and Pietroszek [3] use OCL to define well-
formedness rules for the verification of feature-based
model templates which are analyzed by a SAT solver.
The ability to translate design rules requires detailed
understanding of design rule semantics which is very rel-
evant in this work. However, as already discussed above,
this transformation does not provide a computation of
a cause but merely a different formal basis for reasoning
about the cause. As this paper will show, design models
and design rules are perfectly adequate to support
such reasoning directly without the computational and
memory overhead of having to maintain models/rules in
another, formal language and the transformations back
and forth.
The use of an intermediate representation is not

a pre-requisite for consistency checking. Indeed, it is
possible to write design rules that directly compare
design models rather than transforming them first [13],
[15], [20], [28]. Moreover, relevant to this paper are
approaches to incremental consistency checking because
these approaches are able to detect and track incon-
sistencies when they occur. Cabot et al. present an
incremental approach [2] that is applicable on UML [12]
and OCL [23]. Based on the design rule defined in
OCL they generate a set of actions that, if they are
executed on the model, violate the design rule. During
the validation process the design rule is modified in
a way that the best context is found for an efficient
re-validation. Since the validated design rule changes
its behavior dynamically, this approach cannot provide
any information that would help to reduce the set of
accessed model elements during its validation. Xu et
al. showed in their paper [33] how design rules can
be optimized for the re-validation. They use also a
run-time observation of the design rule validation to
filter out parts of the validation that do not contribute
immediately to the overall validation result. The filter-
ing is not, like in this paper, optimized to detect the
cause of an inconsistency but to optimize the memory
consumption and re-validation time for the pervasive
context where the resources are limited. While all these
approaches are able to detect inconsistencies, none of
these approaches are able to compute the cause of an in-
consistency. Indeed, we would argue that our approach
could complement any of these approaches in comput-
ing the cause. Blanc et al. introduced an incremental
approach that is based on the model changes that can
be made [1]. In their approach a design rule will be re-
validated only if a certain change in the model affects
the result of the design rule. They pointed out that the
performance of re-validating a design rule depends on

7

the complexity of the design rule condition. In [27] we
showed how the performance and the memory used for
the re-validation of a design rule can be optimized.
More relevant, however, are approaches that compute

repairs for inconsistencies of which there are several.
Nentwich et al. present an approach that is type trig-
gered [20]. If a model element of a specific type has been
modified, all design rules that match the type of the
modified element are validated. During the validation
process a set of links are generated. The links can be
consistent links, if the validation of the design rule
detects no violation or the links are inconsistent links, if
the validation detects a violation. These links are used
for the re-validation of the rules. Since only these links
are collected during the validation process, this is a
black box validation. However, in their later work about
generating repair actions [21] they use a white box
analysis of the violated design rule to determine repair
actions for these violated design rules. Nonetheless,
the run-time behavior of a violated design rule is not
considered in their approach. Rather they investigate a
design rule’s structure only. Consequently, they cannot
identify which part of a design rule caused a given
inconsistency (e. g., in case of a∧b their approach would
suggest to repair either a, b, or both even if, say, a is
not violated). Their conservative generator for repair
actions thus presumes that inconsistencies are always
violated in their entirety, which implies that the model
elements they recommend for repairing is a conserva-
tive approximation of the cause we are assessing more
precisely in this paper.
Dam et al. [5], [4] developed an approach on how

OCL design rules can be violated or resolved respec-
tively, based on the internal structure of the design
rules. Based on this analysis, abstract repair plans are
generated at compile time, i. e., the set of OCL design
rules is statically defined in the tool, and this abstract
actions are instantiated if the design rule is violated
by the model. A major difference to our approach is
that they generate the repair plan at compile time of
the tool so they can not detect the concrete model
elements that will cause the violation. Their approach
is designed exclusively for OCL and a proof is given
that this approach is correct and complete regarding the
single OCL operations. Furthermore, this approach, in
contrast to [21], typically considers all inconsistencies at
one time whereas our approach is able to consider single
inconsistency as well as arbitrary groupings thereof.
In the ontologies domain there also exist mechanisms

for detecting the cause of inconsistencies . Kalyanpur
et al. [17] presented an approach to debug unsatisfiable
classes in OWL to detect the causes of errors in web
ontologies. Deng et al. [7] developed an approach that
measures the Shapley value (know from game theory) to
find axioms in ontologies that cause an inconsistency in
the input. These work show the importance of detecting
the cause of inconsistencies, however, these techniques
follow a different approach than our work and are not

readily applicable to the design modeling domain be-
cause they are working with axioms and assertions that
are not based on first order logic. Therefore transforma-
tions are needed and the incremental characteristics of
our approach might get lost.
We base this work on our previous work on incre-

mental consistency checking [8], [14], where the defined
design rules are treated as black boxes. The internal
structure of the design rules is invisible to the user
and can be defined in any language. The validation is
triggered by a context element and the re-validation is
based on a scope of model elements that are accessed
during the validation of the design rule. Furthermore,
this scope is used to generate repair actions for violated
rules [9], [11]. The scope of this approach is similar to
the cause of model element properties. However, the
scope can be 1) incomplete due to short cut validation
(the validation stops when the first violation is found)
and 2) not minimal because of all accessed elements are
in the scope. For example, the attributes of the Class

LED would be in the scope but, as explained in the last
section, they do not cause the inconsistency.

4 Approach

4.1 Principle

To illustrate the determination of the cause of an
inconsistency in principle, consider a simple conjunction
a ∧ b as a design rule condition. From the definitions,
we know that the conjunction is expected to validate
to ‘true‘ to be consistent (recall that the expected
result for design rules is ‘true‘ always). The conjunction
validates to ‘true‘ if a and b are both ‘true‘ and there
are obviously four possible scenarios of a and b being
‘true‘ or ‘false‘ (columns 1 and 2 in Table 2). Both a

and b must be Boolean expressions but during valida-
tion both must access model elements. For example,
attribute1.name 6= ‘x‘ ∧ attribute2.name 6= ‘x‘ is a
possible example for a ∧ b where a accesses the name
of attribute1 to ensure that its name is not ‘x‘ and b

accesses the name of attribute2 to ensure that that’s
name is not ‘x‘ either. So, if both a and b are ‘false‘
then the model elements accessed by a and the model
elements accessed by b must cause (ζe.p) the inconsis-
tency, i. e., attribute1.name and attribute2.name (see
row 2/column 3 of Table 2). However, if b is ‘false‘ only
and a is ‘true‘ then clearly a cannot have caused the
inconsistency – the cause is b (attribute2.name as in
row 3/column 4 in Table 2).
However, multiple expressions may access the same

model element(s). For example, a and b may both
access the same model element(s) as in the exam-
ple attribute1.name 6= ‘x‘ ∧ attribute1.name 6= ‘y‘.
Imagine now that the current name of attribute1 is
‘y‘ in which case attribute1.name 6=′ x′ validates to
‘true‘ whereas attribute1.name 6=′ y′ validates to ‘false‘.
Hence attribute1.name causes the inconsistency even
though it is also accessed by another expression that

8

Table 2

Causes of a Conjunction, Disjunction and negated Conjunction

a b ζe.p(a ∧ b) ζe.p(a ∨ b) ζe.p(¬(a ∧ b)) ζe.p(¬(a ∨ b))

false false ζe.p(a) ∪ ζe.p(b) ζe.p(a) ∪ ζe.p(b) ∅ ∅
true false ζe.p(b) ∅ ∅ ζe.p(a)
false true ζe.p(a) ∅ ∅ ζe.p(b)
true true ∅ ∅ ζe.p(a) ∪ ζe.p(b) ζe.p(a) ∪ ζe.p(b)

does not cause the inconsistency. A model element
property thus causes an inconsistencies if it is involved
in at least one expression that causes the inconsistency.

Table 2 shows the causes for a conjunction in the
third column and the causes for a disjunction in the
fourth column. It is interesting to see that the cause
for ζ(a ∨ b) is the same as for ζ(a ∧ b) if both a and
b are ‘false‘ – because both cause it. However, they
differ otherwise. We can see that the cause computa-
tion depends on the kind of operation (conjunction vs.
disjunction) but it also depends on the validation results
of their arguments a or b. It follows that the cause
computation requires both knowledge on the operations
(obtainable through the design rule structure) and their
validation results (obtainable through the validation
behavior). Obviously, no causes exist whenever there
is no inconsistency.

Indeed, in the context of ζ(a ∨ b) the distinction
between the cause of an inconsistency and repairs is
easy to see. If both a and b are ‘false‘ in a ∨ b then
either a or b needs repairing (but not necessarily both)
– an uncertainty that makes the enumeration of repair
alternatives hard because of the combinatorial explo-
sions in more complex design rules [26]. However, clearly
both a and b caused the inconsistency because if either
had been ‘true‘ then the inconsistency would not have
happened.

The example of the conjunction and the disjunction
shows that not all accessed elements form the cause.
Moreover, the example shows that simply enumerating
accessed model element properties may also fail to iden-
tify all model elements that are part of the cause if the
validation algorithm is optimized to avoid unnecessary
computations, which is common (for example [33] or
[27]). The conjunction and disjunction are but two
examples. Yet the observations made above are evident
in other operations and multiply as the design rules
become more complex. In extreme cases, the design rule
may access a very large number of model elements but
inconsistencies may be caused by few model elements
only. For example, a design rule that ensures that no
two classes are named the same needs to access all
class names (of which there could be many). However,
typically few classes are named the same and the cause
of such an inconsistency are only those few classes
that share names. The degree of reduction is thus
highly dependent on the design rule as our evaluation
(Section 5) will show. Table 2 also shows the causes for a
negation of a conjunction and disjunctions to illustrate

the effect of operation hierarchies. These are discussed
next.

As discussed above, for computing the cause we
require knowledge on operations (hierarchy) and knowl-
edge on validation results. However, we also require
knowledge on expected results. The example above
assumed that a ∧ b was expected to validate to ‘true‘.
Indeed, all design rules are expected to validate to
‘true‘. However, for example, a negation in a design
rule inverts the expected result of its sub-expressions.
Table 2 (row 5) shows the effect of a negation on the
conjunction a∧ b. For example, in column 5 we see that
if both b and a are ‘true‘ then the conjunction may be
‘true‘ but because of the negation the overall result is
‘false‘. Both arguments cause the inconsistency. Quite
similar is the situation for a negated disjunction. For
example, if b = true and a = false then only b causes
the inconsistency because a is ‘false‘ already.

Quantifiers are special. A quantifier normally has two
arguments – the first one being the source which identi-
fies a set of elements and a second one being a condition
that must hold for certain elements from the source.
During validation, the condition of the quantifier will be
validated for each element or combination of elements
if there are multiple elements identified in the source.
Table 3 shows the cause for an universal and existential
quantifier. The condition of the quantifiers are single
values or sub expression that validate to a Boolean
result (a1, a2).

The source of the elements (A) is in the cause al-
ways whereas only those validations of the quantifier’s
condition are in the cause that violate it. In the case
of the universal quantifier all validations of the quan-
tifier condition must be ‘true‘ and as such all those
validations are in the cause that validate to ‘false‘. The
existential quantifier is in essence a negation of the
universal quantifier (∀a ∈ A ≡ ¬∃¬a ∈ A).

Aside of the model elements, expressions may also
be in the cause of their inconsistency (ζǫ). This is
important if the design rule were erroneous and we
like to know which part of the design rule caused the
inconsistency. To illustrate this we extend the abstract
example by replacing the a and b with some more
complex expressions to get a design rule that consists
of more hierarchical levels. Consider the following ex-
panded example: If a and b access other expression like
disjunctions or conjunction, for example, a := ¬(c∧ d),
b := e∧¬d, c := false, d := o.name = m.name 7→ true

(e. g., compares the message name to an operation

9

Table 3

Cause of an Universal and Existential Quantifier

A = {a1, a2} ζe.p(∀a ∈ A : a) ζe.p(∃a ∈ A : a)

{true, true} ∅ ∅
{true, false} ζe.p(A) ∪ ζe.p(a2) ∅
{false, true} ζe.p(A) ∪ ζe.p(a1) ∅
{false, false} ζe.p(A) ∪ ζe.p(a1) ∪ ζe.p(a2) ζe.p(A) ∪ ζe.p(a1) ∪ ζe.p(a2)

name and in our example we assume that both are
equal), e := true. Please note that behind c and e

can also be sub trees that contain accesses to model
element properties but due to simplification for a better
understanding we use constants instead. Each of the
expressions is expected to be ‘true‘ and as such the
cause (ζǫ) of this inconsistency are the expressions a∧ b

and e ∨ ¬d but not the expression ¬(c ∧ d) because
¬(c∧ d) validates to ‘true‘. If c, d and e are accesses to
model element properties then the cause (ζe.p) for this
inconsistency contains the model element properties of
d only (o.name and m.name). c is ‘false‘ indeed, but
due to the negation in front of c ∧ d which inverts the
expected result from ‘true‘ to ‘false‘ and as such this
part of the design rule does not cause the inconsistency
and as such it is not in the cause of an inconsistency.
In summary, the cause of an inconsistency is cal-

culated based on a comparison of an expected and a
validated result of an expression where the expected
result for the design rule condition (which is the root
expression) is always ‘true‘. The expected results of the
sub expression are determined top down and they de-
pend on the expression types (a negation, for example,
inverts the expected result of its sub expressions). Our
approach computes the causes for inconsistent design
rule conditions in a two-step process:
1) generate a validation tree for the inconsistency to

compute the expected and validated results
2) compute the cause by traversing the validation tree

4.2 Generating the Validation Tree

Whereas the design rule condition defines the basic
syntactical structure (similar to a program written
in a programming language [29]), the validation tree
represents the execution of the design rule (similar
to a log of the execution of a program) with all its
intermediate validation results. The hierarchy of the
validation tree reflects the hierarchy of the syntax of the
design rule and the validation tree contains a node for
each validated expression from the design rule condition
and the nodes are annotated with their expected and
validated results.
Algorithm 1 shows how a validation tree is build

up during the validation of a design rule. Indeed, the
algorithm is a simplified validation algorithm with ad-
ditional lines needed for creating nodes/edges in the
validation tree (marked with ‘+‘) and the computation
of expected results (marked with ‘-‘). The remaining
(unmarked) parts that are the same for the normal

Algorithm 1 Computing the Validation Tree during
Validation of Design Rule

va l i d a t e (designRule , contextElement)
s e l f=contextElement
des ignRule . root . expectedR = true

v a l i d a t e (des ignRule . root)

v a l i d a t e (e xp r e s s i on e)
s e t argumentResults = {}

+ add node (e)
f o r e ach argument o f e . arguments

v a l i d a t e (argument)
− i f (argument . val idatedR i s Boolean)
− i f (e . ope rat ion i s Negation)
− argument . expectedR = not e .

expectedR
− else

− argument . expectedR = e . expectedR
argumentResults += argument . val idatedR

+ add edge (e , argument)
end for

e . val idatedR = e . operat ion (argumentResults)

validation. The first expression for which the algorithm
is called is the root expression of the design rule (=the
root of the syntax tree as was discussed in Section 2.3)
which is always a Boolean expression that has ‘true‘ as
its expected result. The algorithm first adds a node to
the validation tree that represents this validated expres-
sion. The next step is the calculation of the arguments
of that expression which are sub expressions explored
recursively. The number of arguments depends on the
operation of the expression (discussed in Section 2.3).
For each argument the validate algorithm is called
recursively do validate the arguments of the expression.
Is the argument a Boolean expression (with a Boolean
validation result) then we compute an expected result
which is equal to the parent expression’s expected result
unless the expression’s operation is a negation. The
loop also gathers the validation results of the arguments
and adds edges to the validation tree from the parent
expression to all its arguments (=sub expressions for
which the recursive descend will add nodes). Once the
results of the arguments have all been computed, the
expression’s operation is performed and the validation
result is stored. The end, a validation tree exists that
mirrors one-to-one the validation of the design rule for
which all validated and expected results are known.

10

γ

∧ǫ0

¬ǫ1

∧ǫ1.1

c : false
ǫ1.1.1

= ǫ1.1.2

m.name

ǫ1.1.2.1
o.name

ǫ1.1.2.2

∧ ǫ2

¬ ǫ2.1

= ǫ2.1.1

m.name

ǫ2.1.1.1
o.name

ǫ2.1.1.2
e : true

ǫ2.2

ς = true ς = false ς 6= σ → ζ
/

Figure 2. Validation Tree for γ = ¬(c ∧ d) ∧ (e ∨ ¬d),
where c = false and d = e = true

In the following we illustrate the validate algorithm
on the example we introduced earlier (Section 4.1).

γ = ¬(c ∧ d) ∧ (e ∨ ¬d)

c := false

d := m.name = o.name 7→ true

e := true

ǫ0 = 〈∧, {ǫ1, ǫ2}, false〉

ǫ1 = 〈¬, {ǫ1.1, ǫ0, true, true〉

ǫ1.1 = 〈∧, {ǫ1.1.1, ǫ1.1.2}, ǫ1, false, false〉

ǫ1.1.1 = 〈ǫ1.1, false〉

ǫ1.1.2 = 〈=, {ǫ1.1.2.1ǫ1.1.2.2}, ǫ1.1, true, true〉

ǫ1.1.2.1 = 〈name,m, ǫ1.1.2, ‘x‘〉

ǫ1.1.2.2 = 〈name, o, ǫ1.1.2, ‘x‘〉

ǫ2 = 〈∧, {ǫ2.1, ǫ2.2}, ǫ0, true, false〉

ǫ2.1 = 〈¬, {ǫ2.2.1}, ǫ2, true, false〉

ǫ2.1.1 = 〈=, {ǫ2.1.1.1, ǫ2.1.1.2}, ǫ2.1, true, true〉

ǫ2.1.1.1 = 〈name,m, ǫ2.1.1, ‘x‘〉

ǫ2.1.1.2 = 〈name, o, ǫ2.1.1, ‘x‘〉

ǫ2.2 = 〈ǫ2, true〉

The numbers of the expression represent the sequence
of how the design rule is validated. The numbers after
the ‘.‘ represent the hierarchy of the design rule’s
validation in terms of recursive calls on the validate
function. The first expression that is validated is the
root expression ǫ0. The next is ǫ1 followed by ǫ1.1 (one
hierarchy lower), ǫ1.1.1, ǫ1.1.2, ǫ1.1.2.1, and so on. The
validation is in post order traversal, i. e., starting with
the left branch, followed by the right branch (argument)
and all other branches (arguments) and then the appli-
cation of the operation (to root of the expression) onto
the branches (arguments).
As simpler and more intuitive representation is given

in Figure 2 which shows the validation for this example.
We call this representation a validation tree. The dia-
mond node of the validation tree defines the design rule

γ

∀a,b ∈ {v = ‘x‘, v = ‘y‘}

⇒

6=

a:x b:x

6=

‘x‘ ‘x‘

⇒

6=

a:x b:y

6=

‘x‘ ‘y‘

⇒

6=

a:y b:x

6=

‘y‘ ‘x‘

⇒

6=

a:y b:y

6=

‘y‘ ‘y‘

ς = true ς = false ς 6= σ → ζ
/

Figure 3. Validation Tree for an Universal Quantifier

condition and the starting point for the validation. This
node is expected (σ = true) to be ‘true‘ always to be
consistent. Solid lines in the validation tree show the
parts of the tree that validated to ‘true‘ and dashed
lines show the ones validated to ‘false‘. Thick lines
indicate the cause, i. e., these parts of the validation tree
where the expected result (ς) differs from the expected
result (σ). The circular nodes are the operations of the
expressions.
The condition starts with a conjunction (∧) where the

expected result is ‘true‘ also (ǫ0). So that a conjunction
validates to ‘true‘, both arguments must validate to
‘true‘, i. e., the expected result for both arguments is
‘true‘. The left branch of the conjunction is a nega-
tion (¬) that inverts the expected result (ǫ1) for the
following conjunction (ǫ1.1) and as such the expected
result for both branches of the conjunction is ‘false‘
also. Once a leaf node has been reached, the validated
results are calculated. The leaf node c is validated
to ‘false‘ (ǫ1.1.1.ς = false), the equality (=) node to
‘true‘ (ǫ1.1.2.ς = true) because of the equality of the
two property call expressions ǫ1.1.2.1 (model element
m and property name) and ǫ1.1.2.2 (model element o

and property name). Hence, the conjunction validates to
‘false‘ (ǫ1.1.ς = false), the negation inverts this result
and validates to ‘true‘ (ǫ1.ς = true).

Now, the left branch of the top conjunction has
been validated but to validate the complete condition,
the right branch must be validated also. The expected
result from this conjunction is propagated down to the
expression on the right branch, i. e., the conjunction
(ǫ2) on the right side is expected to be ‘true‘ also.
The branches of this conjunction are the negation (ǫ2.1)
and the leaf node e (ǫ2.2 = 〈ǫ2, true〉) which validates
to ‘true‘. The negation follows the equality node ǫ2.1.1
which compares two model element properties ǫ2.1.1.1
and ǫ2.1.1.2 (the same expression as ǫ1.1.2. This equality
is also ‘true‘ (ǫ2.1.1.ς = true) and the negation inverts
this result and validates to ‘false‘ (ǫ2.1.ς = false) and as
a consequence the conjunction also (ǫ2.ς = false). The
result from conjunction ǫ2 is propagated to conjunction
ǫ0 which validates to ‘false‘ and hence the overall con-

11

dition validation fails, i. e., the design rule condition is
inconsistent (γ 7→ inconsistent).
As the validation tree of the simple logical expressions

follows strictly the syntactical structure, the validation
tree of a quantifier depends on the number of variables
used in the condition and the number of elements in
the source of the quantifier. During the validation of
a quantifier the condition will be validated for each
variable/element combination that exists in the quan-
tifier’s condition. A separate sub tree in the validation
tree is created for each validation of an element. The
validation tree for a quantifier consist of one branch that
represents the source of the quantifier and i branches
of validation conditions (bi).

i := n
|A|

i . . . number of branches

n . . . variables referencing elements from the source

A . . . source of elements

To illustrate an universal quantifier, we take a set
containing two elements {v = ‘x‘, v = ‘y‘} and check
that the values in this set must be different: ∀a, b ∈ A :
a 6= b ⇒ a.v 6= b.v. Figure 3 shows the validation tree
for this expression. It shows a non violated validation,
i. e., there is no cause in this validation tree. How
a partially violated quantifier looks like is illustrated
in our running example shown in Figure 4. As can
been seen, the condition has been validated for each
permutation of the possible variable assignments. De-
pendent of the quantifier type (universal or existential)
the operation node acts similar as a conjunction (in
the case of an universal quantifier) or an disjunction
(existential quantifier).

4.3 Calculate the Cause

Once the validation tree of an inconsistency is generated
completely, the cause is computed by traversing the tree
from top to bottom to determine which expressions are
violated. The traversing starts at the top node of the
validation tree, the conjunction ǫ0. The validated result
of this expression differs from the validated result and
as such this expression will be included in the cause
(ζǫ = {ǫ0}). The expression (ǫ1) on the left branch
of ǫ0 validates to the expected result (ǫ1.ς = ǫ1.σ)
and as such the left sub tree can be omitted for the
cause calculation because the expected result equals
the validated result. However, the expression (ǫ2) on
the left branch of ǫ0 does not validate to the expected
result (ǫ2.ς 6= ǫ2.σ) and will be included in the cause
(ζǫ = {ǫ0, ǫ2}). The expression (ǫ2.2) on the right branch
of ǫ2 validates to the expected result and as such ǫ2.2
will be not included in the cause. However, the expres-
sion on the left branch (ǫ2.1) will be included in the
cause because the validated result differs from the ex-
pected result (ζǫ = {ǫ0, ǫ2, ǫ2.1}). The expression on the
branch of ǫ2.1 is also in the cause of this inconsistency

Algorithm 2 Computing the Cause of an Inconsistency

1 computeCause (exp r e s s i on e , s e t causeE , s e t
causeP)

2 /∗causeE i s the cause of express ions ∗/
3 /∗causeP i s the cause of model element

prope r t i e s ∗/
4 f o r e ach argument o f e . arguments
5 i f (argument i s Boolean)
6 i f (argument . expectedR <> argument .

val idatedR)
7 causeE += argument
8 computeCause (argument , causeE , causeP)
9 else

10 remove edge (e , argument)
11 end i f

12 else i f (argument i s Constant)
13 causeE += argument
14 else i f (argument i s Property Cal l)
15 causeE += argument
16 causeP += model e lement (s) a c c e s s ed by

argument
17 else i f (argument i s Let)
18 causeE += argument
19 computeCause (argument , causeE , causeP)
20 else i f . . . /∗ Table lookup ∗/
21 end i f

22 end for

(ζǫ = {ǫ0, ǫ2, ǫ2.1, ǫ2.1.1}) but the two leaf expressions
(the property call expression) are not included in the
cause of the design rule. Rather, these two expressions
are used to calculate the model elements that cause
inconsistencies (ζe.p). Recall from Definition 4 that the
cause of an inconsistency is defined as 1) the expressions
where the validated and expected results differ because
they identify which part of the design rule causes the
inconsistency (if the design rule should be erroneous)
and 2) the model elements accessed by expressions
because they identify which part of the model causes
the inconsistency (if the model should be erroneous). As
the parent of this two expression is ǫ2.1.1 which is in the
cause of expressions (i. e., the validated and expected
results are different), the two property calls to model
elements are in the cause: ζe.p = {m.name, o.name}.

Table 4 shows some of the common operations used
in OCL and how their causes are calculated. The cause
calculation is recursive. The cause calculation always
starts at a Boolean expression (the top node is always a
Boolean expression for a valid OCL constraint, namely
the root expression ǫ0) and navigates through its chil-
dren and children‘s children until the leaf expressions
are reached (leaf nodes always access model elements
or are constants for a valid OCL constraint), i. e., the
cause of expressions and the cause of model element
accesses can be affected.

Algorithm 2 shows how to compute the cause out of
a validation tree. The algorithm represents the guarded
cause calculation from Table 4. In the algorithm the
most common expression types are illustrated and the
last else if branch represent the additional operations
shown in Table 4 and provided by OCL. The cause
computation starts at the root which is an expression
with a Boolean result. The compute cause algorithm
has additional two parameters representing the cause

12

of expressions (ζǫ- causeE) and the cause of model
element properties (ζe.p- causeP). The algorithm starts
with the root expression of design rule validation that
detected an inconsistency and the cause of expressions is
initialized with the root expression. For each argument
of this expression it is determined if it validates to
a Boolean result and if yes, then the expected and
validated results of the argument will be compared.
If they differ, the compute cause algorithm is called
recursively and the expression is added to the cause of
expressions (ζǫ). If they do not differ, the branch to the
argument will be cut off from the tree as it cannot have
caused the inconsistency. If the argument is a constant

expression, the expression will be added to the cause of
expressions (a constant is a part of the design rule con-
dition). In the case of a property call expression, all
the model element accessed in this expression are added
to the cause of model element properties (ζe.p). If the
expression is a variable declaration (let expression),
the computeCause algorithm will be recursively called
for both arguments of this expression.
Most of the expressions in Table 4 are guarded by a

condition that specify for which part of the expression
the cause must be calculated. This guard consist of an
expected result of the expression itself and the validated
values from their arguments. As was shown in Table 2,
a conjunction has four different cases that need to be
considered to calculate the cause – three cases where the
expected result is ‘true‘ and one where the the expected
result is ‘false‘. Very similar is the cause calculation of
a disjunction and implication.
In the case of the quantifier we differ between two

guard conditions only but as it will be iterated over
all sub trees generated during the validation, the other
guard conditions are used implicitly (a cause of a sub
tree will be calculated only if the validated result of the
sub tree differs from expected result: ǫ.σ ∧ bi(ai) where
bi is the sub tree for the variable assignments ai). If such
a quantifier has been violated the cause calculation can
be done in the same way as for simple logic operations.
In the last example we started with a conjunction

(ǫ0) and calculated the cause of expressions (ζǫ). The
expression itself was added to the cause and the cause
was calculated for its violated arguments. For which
arguments the cause must be calculated depends on
the expected result of the expression and the validated
results of the arguments because of the expected result,
the expected result of the arguments can be determined
and the cause for an argument must be calculated
only if the validated result differs the expected result.
The condition, if for an argument the cause must be
calculated is expressed in a guard condition next to the
expression (already explained earlier in this section).
In our example only one argument was violated for
which the cause has to be calculated. Every time a
violated expression was visited, this expression was
added to the cause of expressions. When an expression
was reached that has no arguments that validate against

a Boolean result, the cause for the model element
accesses was calculated. In our example this was the
case at the equality expression ǫ2.1.1. This expression
has two property call expressions as its arguments.
One expression that accesses the name property of a
method (m.name) and the other that accesses the name
property of an operation (o.name). In this example
we assume that both are equal. The same properties
are accessed by the equality expression ǫ1.1.2. If, for
example, this expression would also be violated, the
cause of model element accesses would not change, only
expression would be added to the cause of expressions.

The property call expression is the only one ex-
pression type that adds a model element access to the
cause (e for the model element and p for the accessed
property). In the case of quantifiers, collect, select
or size, the source of these expressions (A) are poten-
tial model element property accesses and therefore the
cause will be calculated. If a let expression (variable
declaration) is in a violated path of an condition for
both, the variable declaration (decl) and the condition
where it is uses (in) the cause will be calculated. As
both can be Boolean expressions, the cause calculation
for expression is started which may add elements to the
cause of expressions and to the cause of model element
accesses.

4.4 Algorithm Illustrated

The following illustrates the workings of our approach
on the inconsistency of the Class Torch from the exam-
ple introduced in Section 2. First, the validation tree of
the inconsistent validation is build. Figure 4 shows the
complete validation tree. The root expression is the let
expression which has as its left branch the declaration of
the variable attrNms. This variable is of the OCL type
Bag which is an unsorted collection of the attribute
names of the context class, the UML Class Torch.
The horizontal branch of the collect expression is the
source of elements, analogous to all other operations
that are based on collections (e. g., quantifiers). In our
case these are the attributes of the Torch. The collect
operation accesses the name properties of the source
elements that are added to the collection attrNms. As
the Class Torch has only one attribute, only one branch
is created for the collect expression. This variable is
visible in the condition given in the right branch of the
let expression.

The condition of the let expression starts with an
universal quantifier. The source of this universal quan-
tifier are the super classes of the Class Torch which
are accessed by the allParents property (how the
allParents property is validated was already explained
in Section 2). Because of the recursive validation of
the allParents property, the source of the universal
quantifier consist of seven model element properties.
First, the generalization and general property of the
Class Torch is called, then the same properties for the

13
γ

l
e
t

:=

a
t
t
r
N
m
s
:B
a
g

c
o
l
l
e
c
t

p
∈
T
o
r
c
h
.
a
t
t
r
i
b
u
t
e

p
.
n
a
m
e
=
‘a
ct
iv
a
te
d
‘

∀
c
∈

T
o
r
c
h
.
g
e
n
e
r
a
l
i
z
a
t
i
o
n
.
g
e
n
e
r
a
l
→
L
E
D

L
E
D
.
g
e
n
e
r
a
l
i
z
a
t
i
o
n
.
g
e
n
e
r
a
l
→
L
i
g
h
t

L
i
g
h
t
.
g
e
n
e
r
a
l
i
z
a
t
i
o
n
.
g
e
n
e
r
a
l
→
A
c
t
i
v
a
t
a
b
l
e

A
c
t
i
v
a
t
a
b
l
e
.
g
e
n
e
r
a
l
i
z
a
t
i
o
n
→

∅

∀
p
∈
L
E
D
.
a
t
t
r
i
b
u
t
e

¬ ∃
s
∈
a
t
t
r
N
m
s

=

s
:‘
a
ct
iv
a
te
d
‘

p
.
n
a
m
e
:‘
w
a
rm

th
‘

¬ ∃
s
∈
a
t
t
r
N
m
s

=

s
:‘
a
ct
iv
a
te
d
‘

p
.
n
a
m
e
:‘
b
ri
g
h
tn
es
s‘

∀
p
∈
L
i
g
h
t
.
a
t
t
r
i
b
u
t
e

¬ ∃
s
∈
a
t
t
r
N
m
s

=

s
:‘
a
ct
iv
a
te
d
‘

p
.
n
a
m
e
:‘
a
ct
iv
a
te
d
‘

∀
p
∈
A
c
t
i
v
a
t
a
b
l
e
.
a
t
t
r
i
b
u
t
e

¬ ∃
s
∈
a
t
t
r
N
m
s

=

s
:‘
a
ct
iv
a
te
d
‘

p
.
n
a
m
e
:‘
a
ct
iv
a
te
d
‘

ς
=

tr
u
e

ς
=

f
a
ls
e

ς
6=

σ
→

ζ
/

F
ig
u
re

4
.
V
a
li
d
a
ti
o
n
T
re
e
fo
r
th
e
C
la
s
s
‘T
o
rc
h
‘

14

Table 4

Excerpt of Cause Calculation for Different Expression Types

ǫ.o ǫ.α Cause of Expressions ζǫ Cause of Model Element Properties ζe.p

¬ {a} ζǫ = {ǫ}∪ζǫ(a)

∧ {a, b}

ǫ.σ ∧ a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(b)

ǫ.σ ∧ ¬a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(a)

ǫ.σ ∧ ¬a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

¬ǫ.σ ∧ a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

∨ {a, b}

ǫ.σ ∧ ¬a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

¬ǫ.σ ∧ a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(a)

¬ǫ.σ ∧ ¬a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(b)

¬ǫ.σ ∧ a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

⇒ {a, b}

ǫ.σ ∧ a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

¬ǫ.σ ∧ ¬a.ς ∧ ¬b.ς : ζǫ = {ǫ} ∪ ζǫ(a)

¬ǫ.σ ∧ ¬a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

¬ǫ.σ ∧ a.ς ∧ b.ς : ζǫ = {ǫ} ∪ ζǫ(b)

= {a, b} ζe.p = ζe.p ∪ ζe.p(a) ∪ ζe.p(b)

∀ {A, b} ζǫ = {ǫ} ∪

{

⋃

ζǫ(bi)|ai ∈ A ∧ ǫ.σ ∧ ¬bi(ai).ς
⋃

ζǫ(bi)|ai ∈ A ∧ ¬ǫ.σ ∧ bi(ai).ς
ζe.p = ζe.p ∪ ζe.p(A)

∃ {A, b}i ζǫ = {ǫ} ∪

{

⋃

ζǫ(bi)|ai ∈ A ∧ ǫ.σ ∧ ¬bi(ai).ς
⋃

ζǫ(bi)|ai ∈ A ∧ ¬ǫ.σ ∧ bi(ai).ς
ζe.p = ζe.p ∪ ζe.p(A)

collect {A, b} ζe.p = ζe.p ∪ ζe.p(A) ∪
{

⋃

ζe.p(b(ai)|ai ∈ A)

select {A, b} ζǫ = {ǫ} ∪
{

⋃

ζǫ(bi) ζe.p = ζe.p ∪ ζe.p(A)

size {A} ζe.p = ζe.p ∪ ζe.p(A)

property
call

{p, e} ζe.p = ζe.p ∪ {e.p}

let {decl, in} ζǫ = {ǫ} ∪ ζǫ(a) ∪ ζǫ(b)

constant ζǫ = {ǫ}

Class LED and the Class Light, and at the end only the
generalization property of the Class Activatable is
called.

The first branch of the universal quantifier is another
universal quantifier that has the attributes of the Class

LED as its source from which two branches are created.
The branches start with a negation followed by an
existential quantifier that has the attribute names from
the context class as its source (the variable attrNms).
For each of the attribute names (only one is present
in the context class, i. e., only one branch is created)
is checked if it equals one of the attribute names (the
attributes of the second universal quantifier) of the
class from the first universal quantifier. The equality
expression has the name of the attribute of the Class

Torch as its left branch and the name property of the
attribute of the Class LED as its right branch. The same
validation is done for the other super classes of the Class
Torch. The number of branches of the second universal
quantifier corresponds the number of attributes of the

super class and the number of branches of the existential
quantifier corresponds the number of attributes of the
Class Torch.

As can been seen, the validation fails, because the
Classes Light and Activatable contain an Attribute

named ‘activated‘. Furthermore, in the validation tree
the violated parts can be easily detected. Branches that
validate to ‘true‘ or to a non Boolean value are drawn
as a solid line and branches that validate to ‘false‘ are
drawn as a dashed line. The branches that contribute
to the inconsistency (i. e., cause the inconsistency) are
drawn in thick style. The validation on the Class LED

does not contribute to the inconsistency, because all the
validated result correspond to the expected results. In
contrast, the validation for the other two super classes
cause the inconsistency. From this view we can easily
detect the model elements that caused the inconsistency
as what we have done manually in Section 2. Moreover,
we can also detect the parts of the design rule validation
that are involved in this inconsistency. Something that

15

Table 5

29 Evaluated UML Models

Name #Model

Elements

1 Video on Demand 104

2 ATM 220

3 Microwave Oven 290

4 Model View Controller 418

5 eBullition 513

6 Curriculum 763

7 Teleoperated Robot 1,115

8 Dice 3 1,274

9 ANTS Visualizer 1,282

10 Inventory and Sales 1,296

11 Course Registration 1,406

12 UML IOC F05a T12 1,453

13 VOD 3 1,558

14 Vacation and Sick Leave 1,658

15 Home Appliance 1,707

16 HDCP Defect Seeding 1,784

17 DESI 2.3 1,974

18 iTalks 2,212

19 Hotel Management Sys. 2,583

20 Biter Robocup 2,632

21 Calendarium 2,809

22 UML LCA F03a T1 2,983

23 <unnamed> 5,373

24 NPI 7,110

25 Word Pad 8,078

26 dSpace 3.2 8,761

27 OODT 9,828

28 Insurance Network Fees 16,255

29 <unnamed> 33,347

is hardly possible when considering the syntactic struc-
ture of a design rule condition only. Through the recur-
sive use of the expressions in Table 4 the calculation of
the cause can be fully automated which is implemented
as a plug-in for the IBM Rational Software Architect.
The plug-in is available as a download on our homepage
http://www.sea.jku.at/tools/.

5 Evaluations

We evaluated our approach with regard to correctness
(causes are complete and minimal), effectiveness (re-
ductions compared to existing approaches that could
be used to approximate cause), and computational
scalability. To evaluate this we use 29 UML models
shown in Table 5. The table lists the names of the
models (from which to domain can be inferred) and
their respective sizes. Furthermore, the 29 UML models
are validated against a set of 20 OCL design rules listed
in Appendix A in the supplemental material.

5.1 Correctness

For correctness, calculated causes must be complete in
that they identify all elements that cause the incon-
sistency and minimal in that they do not contain any
elements that do not cause the inconsistency.
For the proof of correctness, we can make the fol-

lowing assumptions which are true for commonly used
modeling languages and design rules: 1) the design rule

is well formed (i. e., syntactically correct) and thus can
be evaluated, 2) the design rule starts its evaluation
always at a context element provided, 3) all model
elements accessed during that rule’s evaluation must be
reached by navigating from this context element (i. e.,
there must not exist any “floating” model parts that
are not connected to other parts but are accessible),
and 4) the design rule is expected to validate to ‘true‘.
All design rules we encountered to date satisfy these
conditions. It is also generally true that design rules are
hierarchical ordered expressions. We basically distin-
guish between Boolean expressions, where the result is
Boolean, and expressions that access/manipulate model
element properties (e. g., strings, collections). If we
think of the syntactic structure as a tree then its leave
expressions are typically model property calls and the
Boolean expressions are above. Since an inconsistency
can be caused by either an incorrect model or an
incorrect design rule, algorithm 2 computes both : 1) the
part of the design rule (the Boolean expressions) that
causes a given inconsistency (lines 5-11) and the part of
the model (the model element properties) contributing
to this cause (lines 12-21). Each model element has
properties and a model is essentially a collection of
model element properties. The manner in which a model
element property may cause an inconsistency is if this
property is an argument in some Boolean expression
above it in the tree – and only then if that Boolean
expression causes the inconsistency, i. e., if the Boolean
expression is in the cause. We first observe that a model
element property only then causes an inconsistency if
it is an argument of a Boolean expression that causes
the inconsistency. The correctness of this statement is
easy to follow. A model element property can only cause
an inconsistency if it somehow negatively influences the
Boolean expressions that make up the inconsistency.

∃e.p ∈ ζe.p, ∃ǫ ∈ ζǫ|ǫe.p ∈ ǫ.α

In the following, we thus merely need to show that our
approach correctly computes which Boolean expressions
cause an inconsistency. The model element properties
that cause an inconsistency are then simply all model
element properties in the arguments of these Boolean
expressions. Line 16 of algorithm 2 thus only adds
model element properties to the cause if it also adds
the expression that accessed it to the cause (line 15).

ζǫ → correct ⇒ ζe.p → correct

To determine whether an expression causes an incon-
sistency, algorithm 2 first computes for every Boolean
expression whether its validation result differs from
the expected result (Line 6). A Boolean expression is
always expected to validate to true. Thus starting from
the root, the expected result must be ‘true‘ unless the
expression uses a Boolean operator that negates (as in
the logical ‘not‘). It is easy to see that the expected

http://www.sea.jku.at/tools/

16

Inconsistency

fail

fail

fail

e.p1

a)

succeed

fail

e.p2

b)

succeed

e.p3

c)

Figure 5. Combinations of Expression Validations in an

Inconsistent Validation Tree

result is correctly computable top down under the
assumption that the root expression is always expected
to validate to ‘true‘ (which is so defined as mentioned
in our assumptions above). Likewise, it is easy to see
that the computation of the validation result is correct
because it is so observed during the validation of the
design rule. The computation of the validation result
is bottom up and simply transcribes the intermediate,
Boolean results encountered.

We say that a Boolean expression succeeds if its
validated result is equal the expected result. Other-
wise it fails. If a Boolean expression succeeds then
the Boolean expression returned the result that was
expected for consistency. Hence, a Boolean expression
that succeeds cannot cause an inconsistency. Indeed, if
the root Boolean expression succeeds then there is not
even an inconsistency. An inconsistency can only hap-
pen if some Boolean expression(s) fail – including the
root expression. However, even in case of inconsistency
some Boolean expressions may succeed (recall example
in Figure 4). (Sub) Expressions that succeed simply
point to parts of design rules that were not inconsistent
and hence did not cause the inconsistency. It follows
that Boolean expressions that succeed cannot cause
inconsistencies. Only Boolean expressions that fail may.
Line 6 if the algorithm 2 thus only explores expressions
that failed.

Unfortunately, not all Boolean expressions that fail
cause inconsistencies. Figure 5 lays out all three possible
scenarios how failed/succeeded Boolean expression may
be composed of in case of inconsistency. Recall that a
design rule typically forms a tree hierarchy of Boolean
expressions. The root Boolean expression must have
failed for there to be an inconsistency. Under a Boolean
expression that fails must either be another Boolean
expression that failed or a property call expressions
the caused the Boolean expression to fail. This is true
always because a Boolean expression can only fail if
one of its arguments provided the ‘incorrect‘ input. This
failed child/argument expression thus caused the parent
expression to fail and if the parent expression caused
the inconsistency and the child expression caused the

parent expression then clearly the child expression also
caused the inconsistency.
However, underneath a failed expression there may

also be any number of Boolean expressions that suc-
ceeded. Similar to before, a Boolean expression can only
succeed if it has at least one Boolean child expression
that succeeds or property call expressions. We already
know from above that succeeded expressions cannot
cause inconsistencies. They are thus ignored (filtered
by the algorithm). However, as Figure 5 shows there
may also be failed expressions underneath succeeded
expressions. These failed expressions cannot cause the
inconsistency because though the expression failed, this
failure did not cause the parent expression to fail and
thus the failure had no influence on the inconsistency.
So, failed child expressions do not cause inconsistencies
if they have some parent expressions (recursive) that
succeeded.
Concluding, the top node in Figure 5 must be marked

‘fail‘ always. Some of its child expressions must have
failed for any parent to have failed but not all child
expressions have to. The right child (b, c) in Figure 5
is marked ‘succeed‘ (imagine the root expression is a
logical ‘and‘ that failed because the left child failed even
if the right child succeeded). The right child expression,
even though it failed, does not cause the parent to fail
and hence no inconsistency could have been caused by
it. Further note that the right child has two more child
expressions of its own where one succeeded (c) and the
other failed (b). We assert that even though the right
child has children that failed none of them can cause the
overall inconsistency. The correctness of this statement
lies in the fact that if the failed sub expression did
not cause its parent expression to fail and this parent
thus did not cause its parent (the root in this case) to
fail. There is no transitive effect in a validation. If an
expression fails only those immediate child expressions
that caused it, contributed to this failure. A failure that
is hidden below a successful child expression can safely
be ignored. We observe the following:
An expression causes an inconsistency if it fails and

its parent expression causes the inconsistency (recursive
except for parent).

∀ǫx ∈ ζǫ|ǫx.σ 6= ǫx.ς ∧ ǫx 6= ǫ0 ⇒ ǫx.ρ.σ 6= ǫx.ρ.ς

We see that Algorithm 2 correctly implements this,
because it starts the calculations at the root expression
(ǫ0) for which the algorithm is called. The cause of
expression is initialized including the root expression.
At the begin, for each argument of the root expression
it is checked what type of expression the argument
is (Line 5, 12, 14, 17). For Boolean expression it is
checked if the expected and validated result differ (Line
6), and if yes, the root expression is added to the
cause of expressions (Line 7) and the cause calculation
algorithm is repeated recursively for each child expres-
sion that failed. The recursive call of the algorithm

17

stops if a leaf (property call / constant expression)
has been reached which are added to the corresponding
causes always. If the expected and validated result are
equal, the corresponding branch is removed from the
tree (Line 10). Therefore, any Boolean expressions in
this removed sub-tree where the expected result might
differ its validated result won’t be reached and the
calculated cause. We conclude that all expressions and
model elements properties identified by the algorithm
must have caused the inconsistency (correctness) and
no expression/model element property can be missing
(minimal).
Please note that there may be very well some model

element properties in the cause of an inconsistency
that occur in branches that are not in the cause of
expressions because a model element property can be
accessed by more than one expression . For correctness,
we thus define further:
A model element property causes an inconsistency if

it is accessed by at least one expression that causes the
inconsistency.

∀ǫe.p ∈ ζe.p∃ǫx ∈ ζǫ|ǫe.p.ρ = ǫx

But because of the strict top-down navigation in
the validation tree (from expression to model element
properties and not from model element properties to
the expressions) for generating the cause, it is guaran-
teed that the accessed model element properties from
the cause can be uniquely associated to the detected
inconsistency.

5.2 Effectiveness

In order to understand the performance of the ap-
proach, we empirically evaluated its computational scal-
ability and its effectiveness. This validation was done
by analyzing 20 commonly-used OCL design rules on
29 UML models. The OCL design rules are all UML
well-formedness rules that are applicable on all UML
models. Unfortunately, model specific rules are hardly
available due the lack of support by the tools used in
productive process. However, the used design rules are
representative enough to show the performance of the
proposed approach and, as the design rules are very
simple, it can be assumed the results would be better
with more complex design rules than they already are.
For computational scalability, we measured the time

needed for our approach to compute the cause for
arbitrary inconsistencies. For effectiveness, we measured
the ratio of the cause size compared to the worst-
case assumption that all model elements that were
accessed during the validation of an inconsistent design
rule must contribute to the cause. This worst case
computation is conservative and computable by state
of the art [8] which displays all, during a design rule
validation accessed model elements, as potential cause
of an inconsistency. Nonetheless, this comparison is

interesting because it reveals whether these existing ap-
proximations would already have been effective enough
for computing causes also (thus invalidating the need
for our approach). The complete list of design rules is
listed in Appendix A in the supplemental material but
only nine of them cause inconsistencies which are listed
here:

Design Rule 13: An interface can only contain public
operations and no attributes.

Design Rule 16: The type of operation parameters
must be included in the name space of the
operation owner.

Design Rule 8: At most one association end may be an
aggregation or composition.

Design Rule 6: The connected classifiers of the associ-
ation end should be included in the name
space of the association.

Design Rule 5: A message direction must match class
association.

Design Rule 15: Operation parameters must have
unique names.

Design Rule 10: A class may use unique attribute
names.

Design Rule 12: The elements owned by name space
must have unique names.

Design Rule 14: No two class operations may have the
same signature.

These design rules were validated on 29 UML design
models with varying sizes – the smallest UML modeling
having merely 104 model elements and the largest
33,347 elements, with a total of 82,279 elements. A
total of 14,111 inconsistencies were detected among
these models and for each inconsistency we computed
the cause. Figure 6 depicts the average as well as the
maximum and minimum sizes of the cause in rela-
tionship to the number of model elements accessed by
its inconsistency. The numbers on the x-axis are the
corresponding number of the design rule. Note that in
the worst case, every model element accessed by that
inconsistency contributed to the cause. Yet, in context
of these diverse design rules, models, and numerous
inconsistencies we found that inconsistencies rarely in-
volve all model elements looked at during validation. We
observed that the cause is in average 19-81% (maximum
of 91%) of these elements only. This provides a strong
indication that the entire scope of accessed elements
is rarely involved in the cause of an inconsistency –
and thus the motivation that our approach provides
improvements to the designer in helping understand the
cause. Since this table is based on 14,111 observations,
it is statistically highly significant.

To understand how many elements typically cause an
inconsistency in absolute numbers, we depict the sizes
of causes in Figure 7, again grouped by design rules (the
number corresponds the number of the design rule). We
see that in average 12 model elements are involved in
causing design rule 5 (with as few as 8 and as much as

18

0

10

20

30

40

50

60

70

80

90

100

Design Rule

C
a
u
se
/
A
cc
es
se
d
E
le
m
en
ts

[%
]

13 16 8 6 5 15 10 12 14

Figure 6. Ratio of Cause and Accessed Elements

0

5

10

15

20

25

Design Rule

C
a
u
se

[#
E
le
m
en
ts
]

13 16 8 6 5 15 10 12 14

Figure 7. Size of the calculated Causes

23). As can be expected, the sizes of causes varies with
design rules; however, only one design rule consistently
has causes above a dozen elements. This is also good
in that the causes are typically small quantities that
could be investigated manually if needed. However,
it is important to distinguish a fact that has been
explored little in related work. Often, validations that
lead to inconsistencies are incomplete validations. That
is, consistency checkers terminate their validation if
it becomes obvious that the design rule is no longer
satisfiable. For example, if a is ‘false‘ in a ∧ b then b is
no longer validated. The cause can thus be computed for
both a complete validation (e. g., one were both a and
b are validated in a∧ b even if a is ‘false‘) and a partial
validation (e. g., one were only a is validated in a ∧ b

if a is ‘false‘). Our approach can be used to compute
the cause for partial or complete validation; however,
it must be understood that partial validations lead to
partial causes only. Therefore, some existing approaches
in state of the art that might be perceived as approxi-
mations of causes would in fact reveal incomplete causes
only [9], [11]. That is, if both a and b are ‘false‘ in a∧ b

then a partial validation would fail to include the cause
of a.

Figure 8 shows the average size of the cause depend-
ing on the design rule size. The number next to the data
points are the number of the design rule. The design rule
size is the number of nodes in the validation tree and
is an indicator for the complexity of the design rule. It

0

5

10

15

Avg. Design Rule Size [# Nodes]

C
a
u
se

[#
E
le
m
en
ts
]

⊗

⊗

⊗

⊗

⊗

⊗ ⊗ ⊗

⊗

13

16

8

6

5

15 10 12

14

10 100 1,000 10,000

Figure 8. Size of the Cause depending on the Design Rule

Size

is worth mentioning it that the most complex design
rule is not necessarily the design rule with the largest
cause. Design Rule 12, for example, has the complete
name space in its scope but if only two elements are
named equally, only three elements are in the cause,
but probably several hundred are in the scope of the
design rule’s validation. This circumstance is reflected
in figure 6 where only about 25% of the scope is in the
cause of an inconsistency.
As can been seen in this empirical evaluation, the pro-

posed approach scales even on larger and more complex
design rule validation regarding appropriate feedback to
the user. Based on the experience of that evaluation
it can be assumed that the approach will perform
still better with increasing design rule complexity (also
shown in [27]).

5.3 Computational Scalability

The first part of the evaluation has shown that our
approach is correct and effective in that it provides
smaller causes than could be computed thus far. Last
but not least, we demonstrate that our approach is also
very fast and scalable. We evaluated the performance
of our approach by measuring that time it takes to
instantiate an inconsistency (through validation) and
calculating the cause. We did so for all 14,111 inconsis-
tencies on a Intel Core 2 Quad CPU (Q9550), running
at 2,883Mhz with 8GB Ram on a 64bit Linux (2.6.34)
system. Figure 9 shows the average validation times of
the design rules applied on the models. The x-axis shows
the average number of nodes for the different design
rules and the y-axis the average time in milliseconds
that it takes to calculate the cause.
We see that the computation of a cause is linear to

the size of the design rules (as proposed in Section 5.3).
Seven of the nine design rules take in average less
than a millisecond and is thus quite fast to compute.
Overall, the causes of 97% of all inconsistencies could
be computed in less than 1ms each, 99.8% in less than
100ms.
While the size of the cause does not depend on

the size of the design rule, the design rule’s validation

19

Avg. Design Rule Size [# Nodes]

T
im

e
[m

s]

⊗⊗
⊗

⊗

⊗

⊗

⊗

⊗
⊗

13

16

8

6

5 15

10

12

14

0.01

0.1

1

10

10 100 1,000 10,000

Figure 9. Validation Times versus Design Rule Size

Avg. Design Rule Complexity [# Nodes]

In
st
a
n
ce
s
[#

]

⊗⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

13

16

8

6

5

15

10

12

14

1

10

100

1,000

10,000

10 100 1,000 10,000

Figure 10. Number of Design Rule Instances depending

on the Design Rule Size

time depends on the design rule complexity, i. e., the
validation time increases linear to the complexity of the
design rule. In figure 10 we analyzed the frequency of
the design rules, how many instances are validated of
each design rule. As we can see, the number of instances
decreases with the complexity of the design rule, so the
effect that more complex design rules need more time
to validate is weakened by the fact that the number of
design rules that must be validated is lesser than the
number of less complex design rules.

While the charts above, depicted in scalability in
terms of design rule complexity, the following depicts
scalability as a factor of the 29 model sizes. There we
see that the computation of causes does not exhibit
scalability problems with larger model sizes but rather
remain nearly constant. Figure 11 shows the average
time to validate a design rule and calculate the cause
depending on the model size. There is only a small
increase of the validation time identifiable that comes
from the increased overhead of our approach. But even
the highest validation and calculation time is less than
100ms.

To conclude the computational scalability of our
approach, we provide an overview about the compu-
tational complexity. The computational complexity of
this approach depends mainly on the complexity of
the design rule and on the structure of the model. We
will show this based on the example design rule from

Model Size [# Nodes]

T
im

e
[m

s]

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕
⊕
⊕⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊗ ⊗⊗

⊗

⊗

⊗
⊗

⊗⊗

⊗

⊗

⊗
⊗

⊗
⊗
⊗
⊗⊗

⊗

⊗

⊗
⊗
⊗

⊗⊗⊗

⊗
⊗

⊗

0.01

0.1

1

10

100

100 1,000 10,000 100,000

⊕ Max
⊗ Avg

Figure 11. Validation Times versus Model Size

Section 2. Let p be the number of parents that a class
has, f1 is the number of features of the class that is
checked and f2 is the number of features of the parent
class. We analyze the design rule structure from the
inside to the outside, beginning where it is checked if a
feature of a parent class is in the set of features of the
class that will be checked. The selection of the feature
names of the classes features can be omitted because
this will be a constant offset, so the resulting complexity
is O(f2). This must be instantiated for each parent
class. The resulting complexity of this particular design
rule is: O(p × f2). The traversal must be done twice,
where the second one is not necessarily a complete
traversal (not violated branches are cut off). But as
this number of traversals is a constant number it can
be omitted for the complexity discussion.
Similar behavior can be discovered for the memory

consumption. The base memory consumption corre-
sponds the number of leave nodes of the validation tree
(O(p×(f2))). Additionally the height h of the validation
tree must be considered. In the best case for a balanced
tree the memory consumption is O(log(h)×p×f2) and
the worst case where each node contains only a single
branch the memory consumption is O(h× p× f2). The
evaluations on real world models have shown that both
cases are not realistic and the reality lies somewhere
between (highly dependent of the design rule structure).
It must be noted that the memory can be freed after the
computation of each inconsistency. Thus the number of
inconsistencies does not affect memory consumption.

6 Conclusions

This paper presented a new and novel approach for
identifying how design rules cause a given inconsistency
and what model elements are involved. We demon-
strated that our approach computes causes correctly, is
very fast, and fully automated/tool support. We demon-
strated through empirical evidence that the causes of
inconsistencies are almost always a subset of the model
elements involved in the computation of inconsistencies.
Thus, the approach gives advice on where and how to
start repairing an inconsistency. This work is useful
for better understanding and visualizing inconsistencies

20

but it is also useful for assessing trust in models –
that is, model elements that are causing inconsistencies
are clearly less trustworthy than the ones that do
not. In future work, we will explore how to repair
inconsistencies (in part already explored in [26]) since
any correct repair must eliminate the cause. It is also
future work to assess the usefulness of the approach to
software engineers in better coping with inconsistencies
and avoiding potentially costly errors caused by an
otherwise incorrect or incomplete understanding.

7 Acknowledgments

This research was funded by the Austrian Science Fund
(FWF): P 25289-N15

References

[1] X. Blanc, A. Mougenot, I. Mounier, and T. Mens. Incre-
mental Detection of Model Inconsistencies Based on Model
Operations. In P. van Eck, J. Gordijn, and R. Wieringa,
editors, CAiSE, volume 5565 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2009.

[2] J. Cabot and E. Teniente. Incremental Evaluation of OCL
Constraints. In E. Dubois and K. Pohl, editors, CAiSE,
volume 4001 of Lecture Notes in Computer Science, pages
81–95. Springer, 2006.

[3] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints.
In S. Jarzabek, D. C. Schmidt, and T. L. Veldhuizen, editors,
GPCE, pages 211–220. ACM, 2006.

[4] H. K. Dam and M. Winikoff. Supporting change propagation
in UML models. In ICSM, pages 1–10. IEEE Computer
Society, 2010.

[5] K. H. Dam and M. Winikoff. Cost-based BDI plan selection
for change propagation. In L. Padgham, D. C. Parkes, J. P.
Müller, and S. Parsons, editors, AAMAS (1), pages 217–224.
IFAAMAS, 2008.

[6] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed.
Constraint-Driven Modeling through Transformation.
In Z. Hu and J. de Lara, editors, ICMT, volume 7307
of Lecture Notes in Computer Science, pages 248–263.
Springer, 2012.

[7] X. Deng, V. Haarslev, and N. Shiri. Measuring Inconsisten-
cies in Ontologies. In E. Franconi, M. Kifer, and W. May,
editors, ESWC, volume 4519 of Lecture Notes in Computer
Science, pages 326–340. Springer, 2007.

[8] A. Egyed. Instant consistency checking for the UML. In
Osterweil et al. [25], pages 381–390.

[9] A. Egyed. Fixing Inconsistencies in UML Design Models. In
ICSE, pages 292–301. IEEE Computer Society, 2007.

[10] A. Egyed, A. Demuth, A. Ghabi, R. E. Lopez-Herrejon,
P. Mäder, A. Nöhrer, and A. Reder. Fine-Tuning Model
Transformation: Change Propagation in Context of Consis-
tency, Completeness, and Human Guidance. In J. Cabot and
E. Visser, editors, ICMT, volume 6707 of Lecture Notes in
Computer Science, pages 1–14. Springer, 2011.

[11] A. Egyed, E. Letier, and A. Finkelstein. Generating and
Evaluating Choices for Fixing Inconsistencies in UMLDesign
Models. In ASE, pages 99–108. IEEE, 2008.

[12] A. Evans, R. B. France, K. Lano, and B. Rumpe. The
UML as a Formal Modeling Notation. In J. Bézivin and
P.-A. Muller, editors, UML, volume 1618 of Lecture Notes in
Computer Science, pages 336–348. Springer, 1998.

[13] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency Handling in Multi-Perspective
Specifications. In ESEC ’93: Proceedings of the 4th European
Software Engineering Conference on Software Engineering,
pages 84–99, London, UK, 1993. Springer-Verlag.

[14] I. Groher, A. Reder, and A. Egyed. Incremental Consistency
Checking of Dynamic Constraints. In D. S. Rosenblum and
G. Taentzer, editors, FASE, volume 6013 of Lecture Notes in
Computer Science, pages 203–217. Springer, 2010.

[15] J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
Management for Multiple-View Software Development En-
vironments. IEEE Transactions on Software Engineering,
24:960–981, 1998.

[16] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, April
2002.

[17] A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debug-
ging unsatisfiable classes in OWL ontologies. J. Web Sem.,
3(4):268–293, 2005.

[18] R. Kowalski. Logic for Problem-solving. DCL Memo 75,
1974.

[19] M. H. Liffiton and K. A. Sakallah. Algorithms for Computing
Minimal Unsatisfiable Subsets of Constraints. J. Autom.
Reasoning, 40(1):1–33, 2008.

[20] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Trans. Internet Techn., 2(2):151–185, 2002.

[21] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency
Management with Repair Actions. In ICSE, pages 455–464.
IEEE Computer Society, 2003.

[22] A. Nöhrer, A. Biere, and A. Egyed. Managing SAT incon-
sistencies with HUMUS. In U. W. Eisenecker, S. Apel, and
S. Gnesi, editors, VaMoS, pages 83–91. ACM, 2012.

[23] OMG. OCL 2.3.1 Specification.
http://www.omg.org/spec/OCL/2.3.1/, 2012.

[24] OMG. UML 2.1 Specification. http://www.uml.org/, 2012.
[25] L. J. Osterweil, H. D. Rombach, and M. L. Soffa, edi-

tors. 28th International Conference on Software Engineering
(ICSE 2006), Shanghai, China, May 20-28, 2006. ACM,
2006.

[26] A. Reder and A. Egyed. Computing repair trees for resolving
inconsistencies in design models. In ASE, pages 220–229.
ACM, 2012.

[27] A. Reder and A. Egyed. Incremental Consistency Checking
for Complex Design Rules and Larger Model Changes. In
MoDELS, Lecture Notes in Computer Science, pages 202–
218. Springer, 2012.

[28] J. E. Robbins. ArgoUML, v0.32.1.
http://argouml.tigris.org/, March 2011.

[29] M. H. Van Emden and R. A. Kowalski. The Semantics
of Predicate Logic as a Programming Language. J. ACM,
23:733–742, October 1976.

[30] M. Vierhauser, D. Dhungana, W. Heider, R. Rabiser, and
A. Egyed. Tool Support for Incremental Consistency Check-
ing on Variability Models. In D. Benavides, D. S. Batory, and
P. Grünbacher, editors, VaMoS, volume 37 of ICB-Research
Report, pages 171–174. Universität Duisburg-Essen, 2010.

[31] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. Küster.
Translation of Restricted OCL Constraints into Graph Con-
straints for Generating Meta Model Instances by Graph
Grammars. Electr. Notes Theor. Comput. Sci., 211:159–170,
2008.

[32] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei.
Supporting automatic model inconsistency fixing. In H. van
Vliet and V. Issarny, editors, ESEC/SIGSOFT FSE, pages
315–324. ACM, 2009.

[33] C. Xu, S.-C. Cheung, and W. K. Chan. Incremental consis-
tency checking for pervasive context. In Osterweil et al. [25],
pages 292–301.

21

Alexander Reder received his master’s degree
in software engineering and PhD degree in
computer science from the Johannes Ke-
pler University Linz in Austria, in 2009 and
2013 respectively. He is currently working as
researcher at the Johannes Kepler Univer-
sity, Institute for Systems Engineering and
Automation. His research interests include
model driven engineering and consistency
management in model based development.

Alexander Egyed is a Full Professor at the
Johannes Kepler University (JKU), Austria.
He received his Doctorate degree from the
University of Southern California, USA and
worked for Teknowledge Corporation, USA
(2000-2007) and the University College Lon-
don, UK (2007-2008). He is most recog-
nized for his work on software and systems
modeling – particularly on consistency and
traceability of models. Dr. Egyed’s work has
been published at over a hundred refereed

scientific books, journals, conferences, and workshops, with over
3000 citations to date. He was recognized as the 10th best scholar in
software engineering in Communications of the ACM, was named an
IBM Research Faculty Fellow in recognition to his contributions to
consistency checking, received a Recognition of Service Award from
the ACM, a Best Paper Award from COMPSAC, and an Outstanding
Achievement Award from the USC. He has given many invited talks
including four keynotes, served on scientific panels and countless
program committees, and has served as program (co-) chair, steering
committee member, and editorial board member. He is a member of
the IEEE, IEEE Computer Society, ACM, and ACM SigSoft.

